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In this paper we define an operator measure s on L(X) into R+ u {0} satisfying 
suitable conditions. Then letting I =s-i(O), we consider the quotient algebra 
L(X)/I, instead of Calkin algebra and define c,(T) = { 1 E C: 17,(1- 7’) is not inver- 
tible in L(X)/I}, where Ii’,: L(X) + L(X)/1 is the natural homomorphism, and 
r,( 2’) = sup{ II): i, E o,(T)}. After proving the fact that e,(T) is equal to the essential 
spectrum of T and replacing standard measure of noncompactness with suitably 
defined s-measures we obtain that the radius r,(T) of the essential spectrum is equal 
to lim,(s(T))““. We also construct examples of such operator measures. c 1987 

Academic Press. Inc. 

I. THE ESSENTIAL SPECTRUM AND ITS RADIUS 

DEFINITION I. 1. Let X be a Banach space, L(X) be the bounded linear 
operators on X and let x be the closed ideal of compact operators on X. 
The quotient algebra L(X)/x is a Banach algebra called the Calkin 
algebra. 

The essential spectrum a,(T) of T is defined by: 

~,(T)={AEC:Z~~(LT) is not invertible in ,5(X)/x} 

where 17, is the natural homomorphism from L(X) onto L(X)/Z. An 
operator TEL(X) is called a Fredholm operator if (i) the range of T is 
closed and (ii) the kernel of T and the cokernel of T are of finite dimension. 
For such an operator T, the index i(T) is defined by 

i(T) = dim(ker T) - dim(cocker T). 

The connection between the class of Fredholm operators and the Calkin 
algebra is contained in the following theorem of Atkinson [3]. 
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THEOREM 1.2. For TEL(X) the following are equivalent: 

(1) T is Fredholm; 

(2) 3H E L(X) such that 1 - TH and 1 - HT are of finite rank; 

(3) THE L(X) such that 1 - TH and 1 - HT are compact; 

where 1 denotes the identity operator on X. 

Therefore an equivalent definition for the essential spectrum is: 

a,(T) = (2 E C: 2 - T is not Fredholm 1. 

The radius r,(T) of the essential spectrum a,(T) is defined by 

r,(T)=sup(lAl:1Eu,(T)}. 

In this section, we shall consider bounded T and shall obtain some other 
equivalents for the spectral radius. Our discussion is motivated by the 
results of Nussbaum [lo] and Lebow and Schechter [S]. Nussbaum uses 
the concept of the ball measure of noncompactness to obtain a formula for 
r,(T). For a bounded set D in X, the ball measure of noncompactness of D, 
denoted by r(D), is defined as 

r>O:Dc fi B(x,,r) . 
,=I 

Here B(xi, r) stands for the ball centered at xi E X with radius r and k is 
arbitrary but finite. We set y(T) = y( T(%*)). Nussbaum proves that 

r,(T) = lim (y( T”))““. 
n 

Lebow and Schechter [S] show 

r,(T) = lim (It T’Y M)“n, where 11 TIJ ,+, = inf{ q: 3a 
n 

subspace M of finite codimension 3 11 Txll < q IIxII, x E M}. It can be shown 
that [ 11 y(T) = lim, 6,(T), where (6,(T)) are the standard Kolmogorov 
diameters of T. Also it is easily seen that 11 TII ,,,, = lim, c,J T), where (c,(T)) 
are the standard Gelfand numbers of T [ 111. We set c(T) = lim, c,(T). 

DEFINITION 1.3. An operator measure s is a map from L(X) into 
R+ u (0) with the following properties: 

(0) s(T) = 0 if T is of rank 1: 

(1) s(T)< IITII; 
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(2) S(T+H)<s(T)+s(H); 

(3) s(TH) <s(T) s(H); 
(4) s(T) = 0 =+ T is compact. 

Let s( .) be an operator measure and let I be the ideal defined as 

I= {TEL(X):S(T)=O}. 

Let (T,)cl and let lim, [IT”-TI( =O. Then s(T)=s(T-T,+T,)< 
s( T- T,) + s( T,,) --, 0. Therefore I is closed and clearly 9 c Z, where 9 
denotes the ideal of finite rank operators. From (4) of Definition I.3 we 
have Zc Xx. Note that if A!’ = g-, the uniform closure of 9, then I= 2”. 
Therefore one can only obtain “nontrivial” ideals Z only when B $ Xx. 
Enflo [6] and Davie [S] have given examples of Banah spaces for which 
9 $ X holds. Now Z is closed and therefore L(X)/Z is a Banach space, let 
ZZ2 : L(X) -+ L(X)/Z be the natural homomorphism. We define the set c,(T) 
by 

CJ,( T) = {A E @: ZZ,(A - T) is not invertible in L(X)/Z). 

Since Z c K it is easy to see that a,(T) c a,(T). 
Now the followig proposition shows that the above two sets are the 

same. 

PROPOSITION 1.4. For TE L(X) we have o<,(T) = o,(T). 

Proof: We only need to show a,(T) c Go. Now suppose A$ o,(T) 
then 2 - T is Fredholm, let T, = A - T. Then the well-known facts about 
Fredholm operators (see Pietsch [ 111) give: there exists a Fredholm 
operator S and finite rank maps F, and F, such that ST, = Id + F, and 
T, S = Id + F,. However, F c Z therefore I 4 a,(T). 

In case I= F-, he uniform closure of 9, the above result has been proved 
by Mattila [9]. 

We define r,(T) by 

r,(T)=sup(IIZj:AEc,(T)). 

However, by Proposition I.4 we have r,(T) = r,( T). Therefore we would 
like to replace measures of noncompactness with s-measures to obtain 
re(T) in terms of them and this is achieved in the sequel. 

DEFINITION 1.5. Let ob( T) denote Browder’s essential spectrum (see 
Browder [4]) which is the set of all A E a(T), the spectrum of T, such that 
at least one of the following conditions holds: 
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(1) The range of i - T is not closed; 
(2) 1 is a limit point of a(T); 

(3) run>, null space (T- A)“] is infinite dimensional. 

There are many other possible definitions of the essential spectrum and, 
in general, these definitions are not equivalent. Note, however, that Brow- 
der’s essential spectrum is the largest [8]. Proposition I.6 below follows 
directly from the well-known work of Gohberg and Krein [7, Theorems 3.3 
and 4.21. Although they have not explicitly defined the essential spectrum, 
the result stated below and its proof are implicit in Gohberg and Krein. We 
include a proof for the sake of completeness. 

Notation. Let X be a Banach space, TEL(X), 6(T) the resolvent set 
of T, 

and 

H={AEc:A-TisFredholm} 

where r is a fixed constant 

PROPOSITION 1.6. Whenever H, n 6(T) # @ and A E H,, then 1 E ch( T). 

Prooj Suppose H,n 6(T) # Qr; let 1,~ H,n6(T) then T-2, is 
invertile, therefore dim ker( T - 2,) = dim coker( T - A,,) = 0, which gives 
i(T-&)=O. But &EH, and hence i(T-A)=0 for all AEH,. Now from 
Theorem 3.3 of Gohberg and Krein [7, p. 20.51 it follows that 
dim ker( T- 2) = 0 for all 2 E H, except at possible isolated points {II,}. At 
these isolated points, T- 2 has closed range, trivial kernel (one-to-one), 
and trivial cokernel (range dense). Therefore T- 1 is invertible except for 
these possible isolated points {Iti,}. This implies i $ (IJT) when T- 1 is 
invertible. Next, one verifies that lj $ cb( T) by considering the definition of 
ab( T); observe for ii as above 

( 1) range of T - 1, is closed since T - Aj is Fredholm, 
(2) jl, is not a limit point of a(T), and 

(3) CUn>,L null space (T - n,)n) is finite dimensional. 

(This corresponds to C,, of Theorem 4.2 of Gohberg and Krein [7, p. 2121 
which shows 3L, 4: (TJ T). 

LEMMA 1.7. Let s be an operator measure and TEL(X). Let 

rl* = inf (s(p))“” and r; = lim (s( Tn))‘? 
n n 
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Then 

(0 rl* = r’ 

(ii) If s(T;ig(T) and if [A( > r>, then A. - T is a Fredholm operator of 
index zero. 

ProoJ: To show r; = r; one only needs s( T. H) < s(T) s(H) for T and H 
in L(X) and s(T) 2 0 for T E L(X). The rest is a standard argument. To 
show (ii), we use a lemma due to Nussbaum [lo] which states that if 
)A/ > r: then I - T is a Fredholm operator of index zero, where 
r: = lim, (y( T”))““. By our assumption on the operator measure, we have 
r; z r: which gives part (ii). 

THEOREM 1.8. Let X be a Banach space and TE L(X). If the operator 
measure s satisfies the condition s(T) > y(T) or s(T) > c(T), Then 

r,(T) = lim (s( T”))“” 
n 

Proof: Let rj’=lim, l)[T”]lI”” and r,=sup{lJ.l: ,l~cr([T])), where [T] 
is the equivalence class of T in L(X)/Z. From the spectral radius formula, 
we have r,= r;. 

Claim 1. r; < rI, where r;= lim,(s(T”))““. Let A ~1. Then s(T) = 
s(T-A+A)<s(T-A)+s(A)< IIT-AlI is true for every A and hence 

s(T)Ci;f IIT-All = IITII,, 

which gives Claim 1. 

Claim 2. r,< r;, Let G = (2~ C: \,?I > r;}. Then G is an unbounded 
subset of the complex plane and G n 6(T) # Iz/. Let 1 E G, then by 
Lemma 1.7, 2 - T is a Fredholm operator of index zero and hence G c H,. 
Then by Proposition 1.6, Agob( Thus Gn crJT)= @ZI; also cr,(T)c 
(r,(T) c crb( T). Therefore G n o,(T) = @ and rI < r;. 

II. EXAMPLES OF OPERATOR MEASURES 

Notation. Let d be the closed ideal with 9 cd c X. For TEL(X), 
define 

PROPOSITION 11.1. 11 TI( ,& is the largest s-measure vanishing on d. 
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Proof /I TII& is the norm of [ 7’1 in L(X)/& and it is well known that 
this is a Banach algebra norm such that I/ T/I ,& d I/ TJ/. Thus (I), (2) and (3) 
of Definition I.3 are immediate. Also II T/I,, = 0 implies TE &’ and so 
TE Xx. Note that )I II ,& is the largest s-measure vanishing on .d. Indeed, 
suppose p is another s-measure vanishing on d and A E SLG?, then 

hence 

cl(T)< IIT- 6 IITII., (1 +&I. 

DEFINITION 11.2. For TEL.(X) and closed ideal d such that 
5 c d c X. let 

d,(T) = II TQ:ll .c, and c,(T) = II-G TII,,, 

where Qk: 1: -+X denotes a surjection with Z=ax, unit ball of X and 
Jp : X-t f? is an isometry with I= 4Yxs, the ball of x’, the dual space of X. 
Observe that 6.,(T) = 0 and c&(T) = 0 for TE d. An s-measure ~1 is called 
an injective s-measure if p(T) = p(J,” T) and surjective s-measure if 
AT)=PVQ:). 

PROPOSITION 11.3. (i) Zf 6,,( T) = 0, then T is compact. 
(ii) Zf X has lifting property, then 6,,(T) = II T/I ,&. 
(iii) 6,,( .) is a surjectiue s-measure. 
(iv) 6,,(T) = 0 fund only if TE (d)“, where (d)” denotes the surjec- 

tive hull of the closure of the ideal d. For definition of the surjective hull of 
an ideal see [ll]. 

ProoJ: (i) Since d c X (1 TQ!Jl, < 11 TQill, or, equivalently, 
6,-(T) d 6J T). However, from [2] we know 6,(T) = y(T) and from [ 1 ] 
we have y(T) = lim, 6,(T) therefore if 6,(T) = 0 then T is compact. 

(ii) II . II.d is the largest s-measure vanishing on &‘, therefore 
6~,( T) < I/ TII,,. Let B: X+ 1: be a map with QkB = identity on E and 
IIBII = 1, 

UT) 9 II TII., = II TQ;BII., G II TQfll IIBII Q d,(T). 

(iii) I: has the lifting property so by (ii) we have 

II TQ:ll., = S.,(~Q:). 

(iv) Since by assumption & is closed, d = 2. Now let TE (.@‘)’ then 
TQk E & and 11 TQill ,r4 = 0. Conversely if 6,(T) = 0 then TQf, E d giving 
TE (~4)‘. 
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PROPOSITION 11.4. (i) Zf c&( T) = 0 then T is compact. 
(ii) ZJX has th e extension property c&( T) = 11 TI/ &. 

(iii) c&( .) is an injective s-measure. 
(iv) c,,(T) = 0 fand only if TE (J)‘, where (2)’ denotes the injective 

hull of the closure of the ideal &. For definition of the injective hull of an 
ideal see [ 111. 

Proof. (i) Since d c X we have \lJ,” TllX d IlJ,” TI/, or equivalently 
cX( T) 6 c&(T). But since cX( T) = c(T) (see [8]) we see that T is compact. 

(ii) (I . I(.& being the largest s-measure vanishing on d gives 
cd(T) < II TIJ &. Let B: 1;” -+ X be the map with BJ,” = identity on X and 
IIBII 6 1, 

II TII .d = IIBJ,” TII .d G II BII II JF TIl d G c.d 0 

(iii) ZF has the extension property so by (ii) we have 

c.,(J,” T)= IIJ,” Tlld. 

(iv) Let TE (2)’ then JF TE d and hence cJ T) = 0. The reverse 
implication follows from the definition. 
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