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In this paper we define an operator measure s on L{X) into R* u {0} satisfying
suitable conditions. Then letting /=s"!(0), we consider the quotient algebra
L(X)/1, instead of Calkin algebra and define ¢ (T) = {Ae C: IT,(A— T) is not inver-
tible in L(X)/I}, where IT,: L(X)— L(X)/I is the natural homomorphism, and
r{T)=sup{{i|: Ae 6 (T)}. After proving the fact that ¢ {T) is equal to the essential
spectrum of 7 and replacing standard measure of noncompactness with suitably
defined s-measures we obtain that the radius r,(T) of the essential spectrum is equal
to lim,(s(T"))"". We also construct examples of such operator measures. € 1987

Academic Press, Inc.

I. THE ESSENTIAL SPECTRUM AND ITS RADIUS

DeriNiTION L1 Let X be a Banach space, L(X) be the bounded linear
operators on X and let " be the closed ideal of compact operators on X,
The quotient algebra L(X)/# is a Banach algebra called the Calkin
algebra.

The essential spectrum a,(7T) of T is defined by:

o0(T)={AeC: II,(A—T)is not invertible in L(X)/A"}

where /I, is the natural homomorphism from L(X) onto L(X)/A4". An
operator Te L(X) is called a Fredholm operator if (i) the range of T is
closed and (ii) the kernel of T and the cokernel of T are of finite dimension.
For such an operator T, the index i(T) is defined by

i(T) = dim(ker T)— dim{cocker T).

The connection between the class of Fredholm operators and the Calkin
algebra is contained in the following theorem of Atkinson [3].
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THEOREM 1.2. For Te L(X) the following are equivalent:

(1) T is Fredholm;
(2) 3IHe L(X) such that 1 — TH and 1 — HT are of finite rank;
(3) dHe L(X) such that | — TH and 1 — HT are compact,

where 1 denotes the identity operator on X.

Therefore an equivalent definition for the essential spectrum is:

o(T)={A€ C: A— Tis not Fredholm}.

The radius r,(T) of the essential spectrum o,(7) is defined by
rd(T) = sup{|4l: ie o (T)}.

In this section, we shall consider bounded T and shall obtain some other
equivalents for the spectral radius. Our discussion is motivated by the
results of Nussbaum [10] and Lebow and Schechter [8]. Nussbaum uses
the concept of the ball measure of noncompactness to obtain a formula for
r,(T). For a bounded set D in X, the ball measure of noncompactness of D,
denoted by y(D), is defined as

y(D)=inf{r>O:Dc O B(x,, r)}.

Here B(x,, r) stands for the ball centered at x,e X with radius r and & is
arbitrary but finite. We set y(T) = y(T(%,)). Nussbaum proves that

rdT)=lim (y(T7))"".

Lebow and Schechter [8] show
rT)=Hm (|| T} )", where || T ,, =inf{n: 3a

subspace M of finite codimension 3 || Tx|| <# ||x|, x € M}. It can be shown
that [1] y(T)=lim, d,(T), where (8,(T)) are the standard Kolmogorov
diameters of T. Also it is easily seen that || T ,, =lim,, ¢,(T), where (c,(T))
are the standard Gelfand numbers of T [11]. We set ¢(T) =lim,, ¢,(T).

DeFNITION 1.3. An operator measure s is a map from L(X) into
R* U {0} with the following properties:
(0) s(T)=01if Tis of rank 1:
(1) s(N)<|Tl;



THE RADIUS OF THE ESSENTIAL SPECTRUM 103

(2) s(T+H)<s(T)+s(H);
(3) s(TH)<s(T)s(H);
(4) s(T)=0=>T is compact.

Let s(-) be an operator measure and let [ be the ideal defined as
I={TeL(X):s(T)=0}.

Let (T,)=I and let lim, |T"—T|=0. Then s(T)=s(T—T,+ T, <
sS(T—T,)+s(T,)—0. Therefore I is closed and clearly # < I, where #
denotes the ideal of finite rank operators. From (4) of Definition 1.3 we
have I< . Note that if # =%, the uniform closure of %, then I=.¢".
Therefore one can only obtain “nontrivial” ideals I only when & g A
Enflo [6] and Davie [5] have given examples of Banah spaces for which
F & A holds. Now [ is closed and therefore L(X)/I is a Banach space, let
IT,: L(X)— L(X)/I be the natural homomorphism. We define the set o ,(T)
by

6 (T)={AeC: II,(A—T) is not invertible in L(X)/I}.

Since /< K it is easy to see that o, (T)<= o (T).
Now the followig proposition shows that the above two sets are the
same.

ProposITION 1.4. For Te L(X) we have 6 (T)=0 ,(T).

Proof. We only need to show a/(T)< o (T). Now suppose A¢a(T)
then A — T is Fredholm, let T, =4 —T. Then the well-known facts about
Fredholm operators (see Pietsch [11]) give: there exists a Fredhoim
operator S and finite rank maps F, and F, such that ST, =1d + F, and
T,S=1d + F,. However, Fc I therefore A ¢ a,(T).

In case /=%, he uniform closure of #, the above result has been proved
by Mattila [9].

We define r(T) by

rdT)=sup{|i]: Aea(T)}.

However, by Proposition 1.4 we have r,(T)=r.(T). Therefore we would
like to replace measures of noncompactness with s-measures to obtain
r.(T) in terms of them and this is achieved in the sequel.

DerINITION LS. Let 6,(T) denote Browder’s essential spectrum (see
Browder [4]) which is the set of all Aea(T), the spectrum of T, such that
at least one of the following conditions holds:
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(1) The range of A — T is not closed;
(2) 4is a limit point of ¢(7);
(3) [U,»null space (T— 4)"] is infinite dimensional.

There are many other possible definitions of the essential spectrum and,
in general, these definitions are not equivalent. Note, however, that Brow-
der’s essential spectrum is the largest [8]. Proposition 1.6 below follows
directly from the well-known work of Gohberg and Krein [7, Theorems 3.3
and 4.2]. Although they have not explicitly defined the essential spectrum,
the result stated below and its proof are implicit in Gohberg and Krein. We
include a proof for the sake of completeness.

Notation. Let X be a Banach space, Te L(X), 6(T) the resolvent set
of T,

H={AeC: .- Tis Fredholm}
and
H,={leC: .- Tis Fredholm and i(A— T)=r},

where r is a fixed constant

ProPoSITION 1.6, Whenever H,nd(T)# & and A€ H,, then L€ o (T).

Proof. Suppose H,nd(T)#; let Age H nd(T) then T—1, is
invertile, therefore dim ker(7T — A,) =dim coker(7 — 4;) =0, which gives
HT—Ag)=0. But A,e H, and hence i(T—4)=0 for all Ae H,. Now from
Theorem 3.3 of Gohberg and Krein [7, p.205] it follows that
dim ker(7T— 1) =0 for all 1€ H, except at possible isolated points {4,}. At
these isolated points, 7— /4 has closed range, trivial kernel (one-to-one),
and trivial cokernel (range dense). Therefore T— A is invertible except for
these possible isolated points {4;}. This implies 4¢o,(7T) when T—4 is
invertible. Next, one verifies that 4,¢ ¢,(7) by considering the definition of
c,(T); observe for 4; as above

(1) range of T— 4; is closed since T— 4; is Fredholm,
(2) A;is not a limit point of ¢(T), and
(3) [Urs, null space (T—4,;)"] is finite dimensional.

(This corresponds to C,, of Theorem 4.2 of Gohberg and Krein [7, p. 212]
which shows 4; ¢ a,(T).

LEMMA L.7. Let s be an operator measure and T € L(X). Let

r¥ =inf (s(T7))"" and  ry=lim (s(T™))"".
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Then

i) rF=r,.
(i) If s(Ty=y(T) and if |A| > r;, then A— T is a Fredholm operator of
index zero.

Proof. To show r¥ =r, one only needs s(T-H)<s(T)s(H) for Tand H
in L(X) and s(T)>0 for Te L(X). The rest is a standard argument. To
show (ii), we use a lemma due to Nussbaum [10] which states that if
|A]>r, then A—T is a Fredholm operator of index zero, where
. =1im, (y(T™))"". By our assumption on the operator measure, we have
ry = r, which gives part (ii).

THEOREM 1.8. Ler X be a Banach space and Te L(X). If the operator
measure s satisfies the condition s(T) = y(T) or s(T)= (T), Then

rT)=1lim (s(T"))""

Proof. Letrj=Ilim, |[T"]|"" and r,=sup{|A|: A€ a([T])}, where [T]
is the equivalence class of T in L(X)/I. From the spectral radius formula,
we have r,=r].

Claim1. r,<r,, where r,=lim,(s(T"))"". Let Ael Then s(T)=
S(Tr—A+ A)<s(T—A)+s(A)<||T— A] is true for every A and hence

s(N<inf |T— Al =T,

which gives Claim 1.

Claim 2. r,<r;. Let G={AeC:|A|>r;}. Then G is an unbounded
subset of the complex plane and GNnd(T)# J. Let ieG, then by
Lemma 1.7, A — T is a Fredholm operator of index zero and hence G < H,,.
Then by Proposition 1.6, A1¢¢,(T). Thus Gno,(T)=; also o/(T)c
6,(T)co,(T). Therefore GNo(T)=F and r,<r}.

II. EXAMPLES OF OPERATOR MEASURES

Notation. Let o/ be the closed ideal with # < &/ =« ¥". For Te L(X),
define

I Tl o =d(T, L)=inf{|T—A|: Aeof}.

ProposiTION 111, ||T| , is the largest s-measure vanishing on <.
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Proof. ||T., is the norm of [T] in L(X)/</ and it is well known that
this is a Banach algebra norm such that || 77|, < | T}i. Thus (1), (2), and (3)
of Definition 1.3 are immediate. Also ||7],, =0 implies Te.s& and so
Te . Note that || ||, is the largest s-measure vanishing on .. Indeed,
suppose u is another s-measure vanishing on </ and A € .o, then

WMD) =w(T-A+A) S w(A)+ I T— A
hence

wID)<|T-Al<IT] o (1 +e).

DerinTioN 112, For TeL(X) and closed ideal & such that
FcecodA, let

0 /AT)=1TQ4ly and  c (T)=IJF T,

where QL:/} — X denotes a surjection with /=%,, unit ball of X and
J¥: X - I is an isometry with I=4%,., the ball of X", the dual space of X.
Observe that 6 ,(T7)=0 and ¢(T)=0 for Te &. An s-measure u is called
an injective s-measure if w(7)=u(J¥T) and surjective s-measure if

w(T)=uw(TQ%)

ProposiTioN 11.3. (i) If 6,(T)=0, then T is compact.

(it} If X has lifting property, then o (T)=|T|,.

(iii) 0,(-) is a surjective s-measure.

(iv) 6 (T)=0 if and only if Te (A ), where (/)° denotes the surjec-
tive hull of the closure of the ideal s/. For definition of the surjective hull of
an ideal see [11].

Proof. (i) Since o A |TQYl»<ITQ%l, or, equivalently,
0 (T)< 8 ,(T). However, from [2] we know &,(T)=y(T) and from [1]
we have y(T)=lim, 8 ,(T) therefore if 6 _(T)=0 then T is compact.

(ii) |||, is the largest s-measure vanishing on 7, therefore
S AN <|T).,. Let B: X — 1! be a map with Q) B=identity on E and
IBIl =1,

O AT T o = 1TQ% Bl o < ITQXI B £ 0.,(T).
(i) 7} has the lifting property so by (ii) we have
ITQxl o = 0.(TQ%).

(iv) Since by assumption & is closed, o = o/. Now let T'e (#/)° then
TQL e« and |TQL|l,, =0. Conversely if 5,(7)=0 then TQ} e .o/ giving
Te (Y.
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ProposiTioN 114, (1) If ¢, (T)=0 then T is compact.

(ii) If X has the extension property c ,(T)=|T| .
(iii) ¢ () is an injective s-measure.
(iv) ¢ (T)=0if and only if Te (), where ()" denotes the injective

hull of the closure of the ideal /. For definition of the injective hull of an
ideal see [11].

Proof. (i) Since of = A we have |J¥ T, <|J¥ Tl or equivalently

e (T)< ¢, (T). But since ¢ ,(T)=c(T) (see [8]) we see that T is compact.

Co

(ii) |-}, being the largest s-measure vanishing on .o/ gives
(1)< ||T),,- Let B:I° —» X be the map with BJY =identity on X and

1Bl <1,

1T =BT o <|IBI NJF TN o <co(T)
(iii) /¥ has the extension property so by (ii) we have
cJZT)=Z T

(iv) Let Te (o) then J¢Te s/ and hence ¢, (T)=0. The reverse

implication follows from the definition.
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