JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 128, 101-107 (1987)

The Radius of the Essential Spectrum

Asuman Güven Aksoy*^{,†}

Department of Math Sciences, Oakland University, Rochester, Michigan 48063

Submitted by Ky Fan

Received November 20, 1985

In this paper we define an operator measure s on L(X) into $R^+ \cup \{0\}$ satisfying suitable conditions. Then letting $I = s^{-1}(0)$, we consider the quotient algebra L(X)/I, instead of Calkin algebra and define $\sigma_I(T) = \{\lambda \in \mathbb{C} : \Pi_2(\lambda - T) \text{ is not inver$ $tible in <math>L(X)/I\}$, where $\Pi_2 : L(X) \to L(X)/I$ is the natural homomorphism, and $r_I(T) = \sup\{|\lambda|: \lambda \in \sigma_I(T)\}$. After proving the fact that $\sigma_I(T)$ is equal to the essential spectrum of T and replacing standard measure of noncompactness with suitably defined s-measures we obtain that the radius $r_e(T)$ of the essential spectrum is equal to $\lim_n (s(T^n))^{1/n}$. We also construct examples of such operator measures. © 1987 Academic Press, Inc.

I. THE ESSENTIAL SPECTRUM AND ITS RADIUS

DEFINITION I.1. Let X be a Banach space, L(X) be the bounded linear operators on X and let \mathscr{K} be the closed ideal of compact operators on X. The quotient algebra $L(X)/\mathscr{K}$ is a Banach algebra called the Calkin algebra.

The essential spectrum $\sigma_e(T)$ of T is defined by:

 $\sigma_e(T) = \{\lambda \in C: \Pi_1(\lambda - T) \text{ is not invertible in } L(X) / \mathscr{K} \}$

where Π_1 is the natural homomorphism from L(X) onto $L(X)/\mathscr{K}$. An operator $T \in L(X)$ is called a Fredholm operator if (i) the range of T is closed and (ii) the kernel of T and the cokernel of T are of finite dimension. For such an operator T, the index i(T) is defined by

 $i(T) = \dim(\ker T) - \dim(\operatorname{cocker} T).$

The connection between the class of Fredholm operators and the Calkin algebra is contained in the following theorem of Atkinson [3].

* I thank Professor M. S. Ramanujan for his suggestions and guidance.

[†] Present address: Department of Mathematics, Claremont McKenna College, Claremont, California 91711.

THEOREM I.2. For $T \in L(X)$ the following are equivalent:

- (1) T is Fredholm;
- (2) $\exists H \in L(X)$ such that 1 TH and 1 HT are of finite rank;
- (3) $\exists H \in L(X)$ such that 1 TH and 1 HT are compact;

where 1 denotes the identity operator on X.

Therefore an equivalent definition for the essential spectrum is:

$$\sigma_e(T) = \{\lambda \in C : \lambda - T \text{ is not Fredholm} \}.$$

The radius $r_e(T)$ of the essential spectrum $\sigma_e(T)$ is defined by

$$r_e(T) = \sup\{|\lambda|: \lambda \in \sigma_e(T)\}.$$

In this section, we shall consider bounded T and shall obtain some other equivalents for the spectral radius. Our discussion is motivated by the results of Nussbaum [10] and Lebow and Schechter [8]. Nussbaum uses the concept of the ball measure of noncompactness to obtain a formula for $r_e(T)$. For a bounded set D in X, the ball measure of noncompactness of D, denoted by $\gamma(D)$, is defined as

$$\gamma(D) = \inf \left\{ r > 0: D \subset \bigcup_{i=1}^{k} B(x_i, r) \right\}.$$

Here $B(x_i, r)$ stands for the ball centered at $x_i \in X$ with radius r and k is arbitrary but finite. We set $\gamma(T) = \gamma(T(\mathcal{U}_X))$. Nussbaum proves that

$$r_e(T) = \lim_{n \to \infty} (\gamma(T^n))^{1/n}.$$

Lebow and Schechter [8] show

$$r_e(T) = \lim_{M \to \infty} (\|T^n\|_M)^{1/n}, \quad \text{where} \quad \|T\|_M = \inf\{\eta: \exists a\}$$

subspace *M* of finite codimension $\exists ||Tx|| < \eta ||x||, x \in M$. It can be shown that $[1] \gamma(T) = \lim_{n \to \infty} \delta_n(T)$, where $(\delta_n(T))$ are the standard Kolmogorov diameters of *T*. Also it is easily seen that $||T||_M = \lim_{n \to \infty} c_n(T)$, where $(c_n(T))$ are the standard Gelfand numbers of *T* [11]. We set $c(T) = \lim_{n \to \infty} c_n(T)$.

DEFINITION I.3. An operator measure s is a map from L(X) into $R^+ \cup \{0\}$ with the following properties:

- (0) s(T) = 0 if T is of rank 1:
- $(1) \quad s(T) \leq ||T||;$

102

- (2) $s(T+H) \leq s(T) + s(H);$
- (3) $s(TH) \leq s(T) s(H);$
- (4) $s(T) = 0 \Rightarrow T$ is compact.

Let $s(\cdot)$ be an operator measure and let I be the ideal defined as

$$I = \{ T \in L(X) : s(T) = 0 \}.$$

Let $(T_n) \subset I$ and let $\lim_n ||T^n - T|| = 0$. Then $s(T) = s(T - T_n + T_n) \leq s(T - T_n) + s(T_n) \to 0$. Therefore *I* is closed and clearly $\mathscr{F} \subset I$, where \mathscr{F} denotes the ideal of finite rank operators. From (4) of Definition I.3 we have $I \subset \mathscr{K}$. Note that if $\mathscr{K} = \overline{\mathscr{F}}$, the uniform closure of \mathscr{F} , then $I = \mathscr{K}$. Therefore one can only obtain "nontrivial" ideals *I* only when $\overline{\mathscr{F}} \subseteq \mathscr{K}$. Enflo [6] and Davie [5] have given examples of Banah spaces for which $\overline{\mathscr{F}} \subseteq \mathscr{K}$ holds. Now *I* is closed and therefore L(X)/I is a Banach space, let $\Pi_2: L(X) \to L(X)/I$ be the natural homomorphism. We define the set $\sigma_I(T)$ by

 $\sigma_I(T) = \{ \lambda \in \mathbb{C} : \Pi_2(\lambda - T) \text{ is not invertible in } L(X)/I \}.$

Since $I \subset K$ it is easy to see that $\sigma_e(T) \subset \sigma_I(T)$.

Now the followig proposition shows that the above two sets are the same.

PROPOSITION I.4. For $T \in L(X)$ we have $\sigma_e(T) = \sigma_I(T)$.

Proof. We only need to show $\sigma_I(T) \subset \sigma_e(T)$. Now suppose $\lambda \notin \sigma_e(T)$ then $\lambda - T$ is Fredholm, let $T_1 = \lambda - T$. Then the well-known facts about Fredholm operators (see Pietsch [11]) give: there exists a Fredholm operator S and finite rank maps F_1 and F_2 such that $ST_1 = Id + F_1$ and $T_1S = Id + F_2$. However, $F \subset I$ therefore $\lambda \notin \sigma_I(T)$.

In case $I = \overline{\mathscr{F}}$, he uniform closure of \mathscr{F} , the above result has been proved by Mattila [9].

We define $r_{I}(T)$ by

$$r_{I}(T) = \sup\{|\lambda|: \lambda \in \sigma_{I}(T)\}.$$

However, by Proposition I.4 we have $r_I(T) = r_e(T)$. Therefore we would like to replace measures of noncompactness with s-measures to obtain $r_e(T)$ in terms of them and this is achieved in the sequel.

DEFINITION I.5. Let $\sigma_b(T)$ denote Browder's essential spectrum (see Browder [4]) which is the set of all $\lambda \in \sigma(T)$, the spectrum of T, such that at least one of the following conditions holds:

- (1) The range of λT is not closed;
- (2) λ is a limit point of $\sigma(T)$;
- (3) $[\bigcup_{n \ge 1} \text{ null space } (T \lambda)^n]$ is infinite dimensional.

There are many other possible definitions of the essential spectrum and, in general, these definitions are not equivalent. Note, however, that Browder's essential spectrum is the largest [8]. Proposition I.6 below follows directly from the well-known work of Gohberg and Krein [7, Theorems 3.3 and 4.2]. Although they have not explicitly defined the essential spectrum, the result stated below and its proof are implicit in Gohberg and Krein. We include a proof for the sake of completeness.

Notation. Let X be a Banach space, $T \in L(X)$, $\delta(T)$ the resolvent set of T,

$$H = \{\lambda \in \mathbb{C} : \lambda - T \text{ is Fredholm} \}$$

and

 $H_r = \{\lambda \in \mathbb{C} : \lambda - T \text{ is Fredholm and } i(\lambda - T) = r\},\$

where r is a fixed constant

PROPOSITION I.6. Whenever $H_r \cap \delta(T) \neq \emptyset$ and $\lambda \in H_r$, then $\lambda \in \sigma_b(T)$.

Proof. Suppose $H_r \cap \delta(T) \neq \emptyset$; let $\lambda_0 \in H_r \cap \delta(T)$ then $T - \lambda_0$ is invertile, therefore dim ker $(T - \lambda_0) =$ dim coker $(T - \lambda_0) = 0$, which gives $i(T - \lambda_0) = 0$. But $\lambda_0 \in H_r$ and hence $i(T - \lambda) = 0$ for all $\lambda \in H_r$. Now from Theorem 3.3 of Gohberg and Krein [7, p. 205] it follows that dim ker $(T - \lambda) = 0$ for all $\lambda \in H_r$ except at possible isolated points $\{\lambda_j\}$. At these isolated points, $T - \lambda$ has closed range, trivial kernel (one-to-one), and trivial cokernel (range dense). Therefore $T - \lambda$ is invertible except for these possible isolated points $\{\lambda_j\}$. This implies $\lambda \notin \sigma_b(T)$ when $T - \lambda$ is invertible. Next, one verifies that $\lambda_j \notin \sigma_b(T)$ by considering the definition of $\sigma_b(T)$; observe for λ_i as above

- (1) range of $T \lambda_j$ is closed since $T \lambda_j$ is Fredholm,
- (2) λ_i is not a limit point of $\sigma(T)$, and
- (3) $[\bigcup_{n \ge 1} \text{ null space } (T \lambda_i)^n]$ is finite dimensional.

(This corresponds to C_{λ_j} of Theorem 4.2 of Gohberg and Krein [7, p. 212] which shows $\lambda_i \notin \sigma_b(T)$.

LEMMA I.7. Let s be an operator measure and $T \in L(X)$. Let

 $r_I^* = \inf_n (s(T^n))^{1/n}$ and $r_I' = \lim_n (s(T^n))^{1/n}$.

104

Then

(i)
$$r_I^* = r_I'$$
.

(ii) If $s(T) \ge \gamma(T)$ and if $|\lambda| > r'_I$, then $\lambda - T$ is a Fredholm operator of index zero.

Proof. To show $r_I^* = r_I'$ one only needs $s(T \cdot H) \leq s(T) s(H)$ for T and H in L(X) and $s(T) \geq 0$ for $T \in L(X)$. The rest is a standard argument. To show (ii), we use a lemma due to Nussbaum [10] which states that if $|\lambda| > r_e'$ then $\lambda - T$ is a Fredholm operator of index zero, where $r_e' = \lim_n (\gamma(T^n))^{1/n}$. By our assumption on the operator measure, we have $r_I' \geq r_e'$ which gives part (ii).

THEOREM I.8. Let X be a Banach space and $T \in L(X)$. If the operator measure s satisfies the condition $s(T) \ge \gamma(T)$ or $s(T) \ge c(T)$, Then

$$r_e(T) = \lim_n (s(T^n))^{1/n}$$

Proof. Let $r_I'' = \lim_n \|[T^n]\|^{1/n}$ and $r_I = \sup\{|\lambda|: \lambda \in \sigma([T])\}$, where [T] is the equivalence class of T in L(X)/I. From the spectral radius formula, we have $r_I = r_I''$.

Claim 1. $r'_{I} \leq r_{I}$, where $r'_{I} = \lim_{n \to \infty} (s(T^{n}))^{1/n}$. Let $A \in I$. Then $s(T) = s(T - A + A) \leq s(T - A) + s(A) \leq ||T - A||$ is true for every A and hence

$$s(T) \leq \inf_{n} ||T - A|| = ||T||_{I},$$

which gives Claim 1.

Claim 2. $r_I \leq r'_I$. Let $G = \{\lambda \in C : |\lambda| > r'_I\}$. Then G is an unbounded subset of the complex plane and $G \cap \delta(T) \neq \emptyset$. Let $\lambda \in G$, then by Lemma I.7, $\lambda - T$ is a Fredholm operator of index zero and hence $G \subset H_0$. Then by Proposition I.6, $\lambda \notin \sigma_b(T)$. Thus $G \cap \sigma_b(T) = \emptyset$; also $\sigma_I(T) \subset \sigma_e(T) \subset \sigma_b(T)$. Therefore $G \cap \sigma_I(T) = \emptyset$ and $r_I \leq r'_I$.

II. EXAMPLES OF OPERATOR MEASURES

Notation. Let \mathscr{A} be the closed ideal with $\mathscr{F} \subset \mathscr{A} \subset \mathscr{K}$. For $T \in L(X)$, define

$$||T||_{\mathscr{A}} = d(T, \mathscr{A}) = \inf\{||T - A|| \colon A \in \mathscr{A}\}.$$

PROPOSITION II.1. $||T||_{\mathscr{A}}$ is the largest s-measure vanishing on \mathscr{A} .

Proof. $||T||_{\mathscr{A}}$ is the norm of [T] in $L(X)/\mathscr{A}$ and it is well known that this is a Banach algebra norm such that $||T||_{\mathscr{A}} \leq ||T||$. Thus (1), (2), and (3) of Definition I.3 are immediate. Also $||T||_{\mathscr{A}} = 0$ implies $T \in \mathscr{A}$ and so $T \in \mathscr{K}$. Note that $|| ||_{\mathscr{A}}$ is the largest s-measure vanishing on \mathscr{A} . Indeed, suppose μ is another s-measure vanishing on \mathscr{A} and $A \in \mathscr{A}$, then

$$\mu(T) = \mu(T - A + A) \le \mu(A) + ||T - A||$$

hence

$$\mu(T) \leq \|T - A\| \leq \|T\|_{\mathscr{A}} (1 + \varepsilon).$$

DEFINITION II.2. For $T \in L(X)$ and closed ideal \mathscr{A} such that $\mathscr{F} \subset \mathscr{A} \subset \mathscr{K}$, let

$$\delta_{\mathscr{A}}(T) = \|TQ_X^1\|_{\mathscr{A}}$$
 and $c_{\mathscr{A}}(T) = \|J_X^{\infty}T\|_{\mathscr{A}}$

where $Q_X^1: l_I^1 \to X$ denotes a surjection with $I = \mathscr{U}_X$, unit ball of X and $J_F^\infty: X \to l_I^\infty$ is an isometry with $I = \mathscr{U}_{X'}$, the ball of X', the dual space of X. Observe that $\delta_{\mathscr{A}}(T) = 0$ and $c_{\mathscr{A}}(T) = 0$ for $T \in \mathscr{A}$. An s-measure μ is called an injective s-measure if $\mu(T) = \mu(J_X^\infty T)$ and surjective s-measure if $\mu(T) = \mu(TQ_X^1)$.

PROPOSITION II.3. (i) If $\delta_{\mathcal{A}}(T) = 0$, then T is compact.

- (ii) If X has lifting property, then $\delta_{\mathscr{A}}(T) = ||T||_{\mathscr{A}}$.
- (iii) $\delta_{\mathcal{A}}(\cdot)$ is a surjective s-measure.

(iv) $\delta_{\mathcal{A}}(T) = 0$ if and only if $T \in (\overline{\mathcal{A}})^s$, where $(\overline{\mathcal{A}})^s$ denotes the surjective hull of the closure of the ideal \mathcal{A} . For definition of the surjective hull of an ideal see [11].

Proof. (i) Since $\mathscr{A} \subset \mathscr{H} ||TQ_X^1||_{\mathscr{H}} \leq ||TQ_X^1||_{\mathscr{A}}$ or, equivalently, $\delta_{\mathscr{H}}(T) \leq \delta_{\mathscr{A}}(T)$. However, from [2] we know $\delta_{\mathscr{H}}(T) = \gamma(T)$ and from [1] we have $\gamma(T) = \lim_n \delta_n(T)$ therefore if $\delta_{\mathscr{A}}(T) = 0$ then T is compact.

(ii) $\|\cdot\|_{\mathscr{A}}$ is the largest *s*-measure vanishing on \mathscr{A} , therefore $\delta_{\mathscr{A}}(T) \leq \|T\|_{\mathscr{A}}$. Let $B: X \to l_I^1$ be a map with $Q_X^1 B =$ identity on E and $\|B\| = 1$,

$$\delta_{\mathscr{A}}(T) \leq \|T\|_{\mathscr{A}} = \|TQ_{X}^{1}B\|_{\mathscr{A}} \leq \|TQ_{X}^{1}\| \|B\| \leq \delta_{\mathscr{A}}(T).$$

(iii) l_I^1 has the lifting property so by (ii) we have

$$\|TQ_X^1\|_{\mathscr{A}} = \delta_{\mathscr{A}}(TQ_X^1).$$

(iv) Since by assumption \mathscr{A} is closed, $\mathscr{A} = \overline{\mathscr{A}}$. Now let $T \in (\mathscr{A})^s$ then $TQ_X^1 \in \mathscr{A}$ and $||TQ_X^1||_{\mathscr{A}} = 0$. Conversely if $\delta_{\mathscr{A}}(T) = 0$ then $TQ_X^1 \in \mathscr{A}$ giving $T \in (\mathscr{A})^s$.

106

PROPOSITION II.4. (i) If $c_{\mathcal{A}}(T) = 0$ then T is compact.

(ii) If X has the extension property $c_{\mathcal{A}}(T) = ||T||_{\mathcal{A}}$.

(iii) $c_{\mathcal{A}}(\cdot)$ is an injective s-measure.

(iv) $c_{\mathcal{A}}(T) = 0$ if and only if $T \in (\overline{\mathcal{A}})^i$, where $(\overline{\mathcal{A}})^i$ denotes the injective hull of the closure of the ideal \mathcal{A} . For definition of the injective hull of an ideal see [11].

Proof. (i) Since $\mathscr{A} \subset \mathscr{K}$ we have $\|J_F^{\infty} T\|_{\mathscr{K}} \leq \|J_F^{\infty} T\|_{\mathscr{A}}$ or equivalently $c_{\mathscr{K}}(T) \leq c_{\mathscr{A}}(T)$. But since $c_{\mathscr{K}}(T) = c(T)$ (see [8]) we see that T is compact.

(ii) $\|\cdot\|_{\mathscr{A}}$ being the largest s-measure vanishing on \mathscr{A} gives $c_{\mathscr{A}}(T) \leq \|T\|_{\mathscr{A}}$. Let $B: l_{I}^{\infty} \to X$ be the map with $BJ_{X}^{\infty} =$ identity on X and $\|B\| \leq 1$,

$$\|T\|_{\mathscr{A}} = \|BJ_{\mathcal{X}}^{\infty} T\|_{\mathscr{A}} \leq \|B\| \|J_{\mathcal{X}}^{\infty} T\|_{\mathscr{A}} \leq c_{\mathscr{A}}(T).$$

(iii) I_I^{∞} has the extension property so by (ii) we have

$$c_{\mathscr{A}}(J_X^{\infty} T) = \|J_X^{\infty} T\|_{\mathscr{A}}.$$

(iv) Let $T \in (\overline{\mathscr{A}})^i$ then $J_X^{\infty} T \in \mathscr{A}$ and hence $c_{\mathscr{A}}(T) = 0$. The reverse implication follows from the definition.

References

- 1. A. G. AKSOY, "Approximation schemes, related s-numbers and applications," Ph.D. thesis, University of Michigan, 1984.
- K. ASTALA, On measures of non-compactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. A I Math., Dissertationes 29 (1980), 1–42.
- 3. F. V. ATKINSON, The normal solubility of linear equations in normed spaces, *Mat. Sb.* (*N.S.*) 28 (70) (1951), 3-14. [Russian]
- F. E. BROWDER, On the spectral theory of elliptic differential operators, Math. Ann. 142, (1961), 22-130.
- 5. A. M. DAVIE, The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973), 261-266.
- P. ENFLO, A counterexample to the approximation property in Banach spaces, Acta Math. BO (1973), 309–317.
- I. C. GOHBERG AND M. G. KREIN, The basic propoitions on defect numbers, root numbers and indices of linear operators, *in* Amer. Math. Soc. Translations, Series 2 Vol. 13, pp. 185-264, Amer. Math. Soc., Providence, RI, 1960.
- 8. A. LEBOW AND M. SCHECHTER, Semigroups of operators and measures of noncompactness, J. Funct. Anal. 7 (1971), 1-26.
- 9. K. MATTILA, Normal operators and proper boundary points on the spectra of operators on a Banach space, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 19 (1978).
- 10. R. O. NUSSBAUM, The radius of the essential spectrum, Duke Math. J. 37 (1970), 473-478.
- 11. A. PIETSCH, "Operator Ideals," North-Holland, Amsterdam, 1980.